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ABSTRACT 

The real  and imaginary components of the indices of refraction, 

the optical constants, of silver, a silver-indium alloy, gold, gold- 

aluminum alloys, and aluminum have been studied in the wavelength 

range of 304 to 1671 A. ' 

Electrical conductivity as derived from the optical constants is 

shown to be related to interband transitions in these metals. A model 
has been constructed which permits computation of conductivity on the 

basis of these transitions and the  energy band structure of the metal. 

The effectiveness of this model is shown for the metals studied. 

Analysis of results for silver indium alloys indicate a breakdown 

of the rigid band concept. A Fermi surface which has less contact at 

the Brillouin zone faces and a less distorted shape is indicated for the 

alloy. The modified energy band structure is presented and discussed. 

The relation between the energy gap a t  Brillouin zone faces and 

the  interband transition probability is developed and data are presented 

which demonstrate its relative importance. 
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CHAPTER I 

INTRODUCTION 

In the region of visible radiation m o s t  metals can be described 

optically as having high reflectivity and low transmissivity. These 

properties can be defined in  a more quantitative manner with the in- 

troduction of two quantities: the index of refraction, n ,  and the ex- 

tinction coefficient, k. The index, n ,  is usually defined as the ratio 

of the velocity of light in  vacuo to the velocity of propagation in the 

medium under consideration, while the coefficient k is related to the 

rate of absorption of energy from the incident beam of radiation. 

In m o s t  non-conductors k is essentially zero, but in me ta l s  it 

is usually the dominant factor of reflectivity and may assume values 

much greater than n. These optical constants have attracted consider- 

able attention from the t i m e  of the formulation of Maxwell's equations. 

Indeed, the latter can be written to include these constants in  a com- 

plex index of refraction defined as N = n - ik .  It should be noted that 

the appellation "optical constant'' is somewhat a misnomer because 

both n and k are distinctly functions of the frequency of radiation. 

When Maxwell's equations are  written in  terms of the complex 

index, an expression for the electric field inside the m e t a l  is obtained 

which includes an  exponential attenuation factor: 

where 4 is a unit vector in the direction of propagation. Since the in- 

tensity of the electromagnetic wave goes as the square of the electric 

vector, the decay of intensity with distance is given by the exponent 
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4 r k / X  where X is the free space wavelength. This exponent is often 

referred to as the absorption coefficient. 

Further manipulation of Maxwell's equations produces expres- 

sions for conductivity and dielectric constant i n  terms of the optical 

constants: 

(2) (T = nky , and K = n - k . 
A determination of these constants therefore permits an  evaluation of 

two important electrical quantities. However, conductivity and di- 

electric constant were also derived by Drude, Zener and Kronig 

with the equation of motion for a free electron in a n  oscillating electric 

field. This strictly classical approach was found to give satisfactory 

results at wavelengths in  the far infrared, but the theoretical pre- 

dictions do not agree with experimental results in the region of visible 

and shorter wavelengths. At these frequencies, n and k are usually 

determined by means of absorption or reflection measurements and are 

then used to evaluate conductivity and dielectric constant by means of 

Equation (2). 

2 2  

1 starting 

In the far ultraviolet it is not unusual to find conductivities 

which exceed the Drude value by factors of several hundred, and we 

must resort to s o m e  other approach for an  explanation of the observed 

phenomena. 

The advent of quantum theory and the introduction soon there- 

after of concepts such as energy bands in  solids provided the foun- 

dation for radically new approaches to many physical problems, 

including that of the optical properties at short wavelengths. The work 

of Bloch, especially, supplied the basis for a quantum formulation of 

optical phenomena in solids. Chapter I11 presents a development of 

this  formulation and suggests means of applyingit to quantities 

as conductivity. 

'F. Seitz, Modern Theory of Solids, McGraw-Hill Book 
New York, 1940. 

such 

c o . ,  
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Although the quantum mechanical approach to this problem 

appears basically sound, its practical application has  been hampered 

by the difficulties attendant to writing the wave function for the system 

of electrons in  a me ta l .  It is only in recent years that credible wave 

functions and energy level schemes have been devised for other than 

the simplest metals. 

theoretical band structures which were calculated in  the last two years. 

The investigations presented here are  those of the optical 

The results discussed in  Chapter IV are based on 

properties of several metals and their alloys and the relationship of 

these properties to the energy band structure of the metals. Included 

are measurements of n and k in the wavelength range where interband 

transitions occur and the calculation of conductivity from these con- 

stants.  A model is introduced which permits the computation of con- 

ductivity from quantum mechanical principles and a comparison of the 

two results is used to analyze the band structure of the m e t a l s .  



CHAPTER I1 

THEORY - CLASSICAL 

A. Maxwell's Equations and Optical Constants 

Consider a plane , electromagnetic wave traveling in  the positive 
-t 4 

X direction, with E = E 9, and H = H k , and assume a t i m e  depend- 
-iwt ence for E such that E = E(x) e 
1 can be written in MKS units as 

2 4 + y_,  . Then the general wave equation 

2- 4 

(1) - a2E' = - ( P E W  2 + i w p o ) E  = -K E, where, 2 ax 

€ = K €  K = the dielectric constant o 1  

p = K ~ . L ~  , K~ = relative permeability 

K = a  - i p  . 
A s  a solution to Equation (1) we have 

i(k - w t )  -. -pX ei(ax - w t) 4 4  

(2) E = E e = E  e 
0 0 

The last equation can be written i n  terms of a complex index of re- 

fraction, N , by using the following relations 

h = free space wavelength 
0 

K = (n - ik) = complex index of refraction 

k = extinction coefficient . 

'W. K. H. Panofsky and M. Phillips, Classical  Electricity and 
Magnetism, Addison-Wesley Publishing Co. , Reading , Mass .  , 
Chapter 11. 
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Then, in t e rms  of a complex index, the electric and magnetic fields 

are  

- - -io (t - y N X) - - -iw (t - c N x) 
(3) E = E e , H = H  e 

0 0 

Recalling Maxwell's equations in the form 

we can substitute for r a n d  E i n  (4) from (3) and obtain 

N -  N -  - i w  y H = (a - iwcEO)z, and io E = i O K  p Ff . m o  (5) 

If K 

equations in (5) are combined, the following relation results 

is set equal to unity, as is possible for many media, and the two m 

2 2  (6) a - i o ~ ~  = 2 w ~ ~ n k - i w ~ ~ ( n  - k ) , 
0 

Upon equating real  and imaginary parts we obtain expressions for the 

conductivity and the dielectric constant of the medium: 

2 2  (7) a = 2 n k ~  w K = n - k . 
0 

In cgs units these quantities are  given as 

(8) a = nkv 
2 2  ~ = n  - k  . 

Thus, the real and imaginary parts of the index of refraction are basic 

to both conductivity and dielectfic constant. 

Further application of Maxwell's equations with appropriate 

boundary conditions leads to the generalized Fresnel equations. For 
homogeneous, isotropic, semi-infinite media, these can be written as 2 

sin(& - e ) 
sin(++ e )  

- -  n cos6 - COS& 

n cos6 + cos @ - 
E " 
S 

S 
(9) E = - 

Panofsky and Phillips, op. cit. , p6 178. 2 
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n cos@- cos0 tan(&- e )  
n cos@+ case tan(@+ e )  

E " 

P 

- (10) f = - - 

where 

s = that component of E perpendicular to plane of incidence 

p = that  component of E parallel to plane of incidence 

@ = angle of incidence 

e = angle of refraction . 
Unprimed terms denote the incident electric field components and 

primed terms denote the reflected field components. Noting that the 

intensit ies of t h e  reflected and refracted beams are proportional to the 

square of the wave amplitudes, the Fresnel equations can be used t o  

obtain reflectivity in  terms of the angle of incidence and the two com- 

ponents of the index of refraction, namely 

2 2 ( a  - cosd) + b  
2 

( a  + cos$)2 + b 
R =  

S (1 1) 

a2 + b 2 - 2a sin& tan& + s in  2 & tan 2 d 
P S 2 2 2 

R = R  
a2 + b + 2a s in@ tan@ + sin @ tan @ 

where 
4 

R = reflectivity of that component of E perpendicular to  the 
S 

plane of incidence 
4 

R = reflectivity of tha t  component of E parallel to the plane of 
P 

incidence 

1 2 2  2 2 1 1 2  1 2  2 2 1/2 
a = [ (n2 - k2 - sin @ )  + 4n k ] + - [n - k - sin @]  2 

1 2 2 2  2 2 1 1 2  1 2  2 2 1/2 
b = T [ ( n  - k 2 - s i n @ )  + 4 n k ]  - ~ [ n  - k  - s i n @ ]  

At normal incidence sin@ = 0 and we have 
n n 

(n - 1)' + k' 
( n + l ) + k  2 2 .  R = R  = 

S 

With these relations, therefore, one can obtain n and k for a medium i f  
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reflec ivity measurements are performed at least at two d fferent angles 

of incidence. 

Inasmuch as algebraic solutions of these equations for n and k 

is not possible, various graphical and geometrical solutions have been 
3 4 proposed. In this work, the method of Tousey , as extended by Cole , 

was  used to obtain n and k, given R and @ . Graphs of R versus n for 

constant k and C#I were used to obtain pairs of values in  an n-k plane. 

Plots of these values of n and k for two or more angles of incidence re- 

veal a unique pair of n and k which satisfy the Fresnel equations. 

For these results to be valid, the degree of polarization must be 

taken into consideration. We defined the degree of polarization of the 

incident beam as 

(1 3) 
I - I  u 
I + I  P =  
P S  

and adopted a trial and error method in  the solution of Equation 11 using 

various values of P. 

@ , (70" , SO" , 30" , and l o D ) ,  and n-k pairs were obtained for various 

choices of P. It was found that a most constant multiple intersection 

of the n-k curves resulted with a unique value of P. This value of P was 

then used to define the optical constants. Figure 1 shows two n-k graphs 

for gold at 1671A and demonstrates the effect of varying the value of P. 

Experimentally, R was measured at four values of 

Since the intersections of these four curves were influenced by errors of - 
experiment and graphical interpolation, an  average value was taken for 

the point of intersection with the most probable P. 

Reflectivity as a quantity does not uniquely characterize a 

particular medium as to its conductivity, nor can the converse notion be 

3R. J .  Tousey, J. Opt. SOC. Am. 29, 235, (1939). 

4T. T. Cole, Thesis, University of Colorado, 1961. 
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accepted. The quantities n and k appear to be more fundamental in  this 

respect. Let u s  consider the expressions derived for conductivity and 

for reflectivity at normal incidence, equations (8) and (12). Using 

these relations, one can calculate R as a function of k for fixed n ,  and 

then construct a fami ly  of curves, each for a different value of n as in 

Figure 2. From this construct one can devise curves of iso-reflectivity 

for various combinations of n and k a s  in  Figure 3 .  The two dashed 

curves represent lines of constant nk product, or lines of constant 

conductivity. In Figure 3 we can compare two media, A and B,  which 

have different conductivities. In t h e  example chosen, A has  a lower 

conductivity than B but higher reflectivity, in contrast to the intuitive 

feeling that increased conductivity should lead to higher reflectivity. 

The s a m e  results can also be obtained for reflectivity at other than 

normal incidence. 

B. Drude, Zener, Kronig Free Electron Gas 

In this concept, the conduction electrons in a m e t a l  are assumed 

to be perfectly free and to move in a random manner. Their velocity 

distribution is governed by the laws of classical  statistical mechanics, 

and they undergo collisions caused by thermal effects or structural 

imperfections in  the 

average velocity is 

4 

v =  a (14) 

lattice. In the absence of any external forces their 

+ N 

i= 1 
'c N vi 

At equilibrium, v will be zero since there will be just  as many electrons 

moving in one direction as in  the opposite direction. 
a 

Because of the collisions which occur one must introduce a re- 

laxation t i m e  into the equations of motion of the electrons. This relax- 

ation t i m e ,  

between collisions and appears as a damping t e rm in  the equations. 

, will be closely related to the average t i m e  of flight 

The equation of motion for a free electron in  the presence of an  

electric field is 
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Relation between n and k for constant reflectivity 

and normal incidence.  
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d x + m  2 dx 

r - dt = -eEx m -  
dt 

A solution to (14) for a field which varies as e io t  is 
e E  

X (1 6 )  x =  
m(4n2v2 - 2ni v/r)  

Now, the current density, jx, is given by 

dx 
1, d t  = N e  - = oEx 

where 

N = number of free electrons per unit volume. 

Substituting in  the last equation for X, and solving for the real part of a, 
we get 

9 

NeL 1 
2 2  1 o = -  

m r  ( 4 n v  +2)  (18) 

r 
For the case of a static field, v = 0,  and the expression for o reduces 

Experimental measurements of conductivity of the noble metals indicate 

a relaxation t i m e  of about 1 0  
-13 seconds. 

4 
The Drude theory has been tested by Hagen and Rubens in the 

1 far infrared where v << - , and in this region there is good agreement r 
between calculated and measured values. In the visible and ultraviolet 

however, the theory does not agree with experimental results. In this  
1 region, v>>- , and the expression for a reduces to r 2 N e  

2 2  
41r m7v 

(20) 0 =  

4E. Hagen and H. Rubens, Ann. Physik, 14, 936, (1904). 
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Curves of conductivity vs. wavelength in the far ultraviolet, 

(obtained from n ,  k measurements), show characteristic humps and 

valleys with values of conductivity often far exceeding those pre- 

dicted by the Drude theory. Such discrepancies are to be expected 

inasmuch as the simple theory does not consider possible transitions 

between quantum mechanical states. 

developed in  later sections and applied to the problem of optical 

properties and conductivity. 

The quantum formulation will be 



CHAPTER I11 

QUANTUM MECHANICAL TREATMENT 
OF OPTICAL PROPERTIES 

A. Free Electron Model 
1 8 2  The Schroedinger equation for an electron in free space is 

n 

-n" 2 - v  $ = E $  2m 

and has  the normalized solution 
-4 

where 2 2mE k = -  
fi2 

and should not be confused with the extinction coefficient derived in 

Chapter 11. 

Application of boundary conditions leads to discrete values for the 

wave vector k. If we consider the electron to be confined within a cube 

of edge L and require that 

4 

(3) $ (X#Y8z) = $ (x + L 8 Y 8 z )  

then the allowed values of k are 
(4) k = - 2n n k = 2 n n  - a n  

X L x 8  y L y '  k 2 - L  2 , 
where n n and n are integers. x8 y 8  2 

The Pauli exclusion principle allows only two electrons in  each 
4 1 

2 of the three components of k ,  one electron with spin + - , and one with 

'L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co. , 

2 
New York, 1955.  

C. Kittel , Introduction to Solid State Physics , John Wiley and 
Sons, Inc. , New York. 



IS 
1 - .  

1 spin - - 2 '  
and the system is to be at equilibrium, states in cspace will be filled 

If N electrons per unit volume are to be confined in the cube 

in such a manner tnat tne energy or tne  system is at a minimum. Under 

these conditions the filled states wil l  form a sphere in k-space with a 

radius given by 

(5) kf = (3s N) 

Correspondingly, electrons will occupy all energy levels up to 

4 

2 1/3 

1 -n E = - - - - (3n'N) 
f 2m 2m 

at a temperature of absolute zero. E is known as the Fermi level and 

its order of magnitude is 5 ev. for many metals. 
f 

The density of states, i. e. , the number of states per unit energy 

range per unit volume, is easily found. Letting g(E) be the density of 

states, we have 

Thus, for a temperature of absolute zero, the density of states r ises  

parabolically until the Fermi level is reached, then drops sharply to 

zero. Higher temperatures lead to a slight rounding off of the dis- 

continuity at the Fermi level. This rounding off occurs over an  energy 

region of approximately kT, (kT- 0.026 ev. at room temperature), and 

therefore only a s m a l l  fraction of the average Fermi level. 

The Fermi surface is a boundary in k-space which separates the 

occupied states from the unoccupied ones. For perfectly free electrons 

the surface is spherical, but this is a n  idealized case which exists 
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only when a potential energy term is absent from the Schroedinger 

equation. 

The wave function given in (2) is applicable t o  one electron 

only. For the system of N electrons one can approximate the total 

wave function by use  of the one-electron approach. In this  scheme a 

wave function for a n  N electron system is constructed from N one- 

electron functions and the Hamiltonian for the system includes the 

energy of coulomb interaction between electrons. The operator for this 

energy takes the form 

and the prime on the summation indicates omission of terms i = j .  
3 The N-electron wave function must be antisymmetric and can be 

written as 

where the permutation operator covers the range of the N! permutations 

and p is the parity of the p-th permutation. The C#I include a space 

function, qi (r ) , and a spin function, $ (s) . This sum can also be 

written in  a form known as the Slater determinant : 

i 
4 

I 

‘L, I .  Schiff, op. cit., p. 224. 



This determinant has  the interesting property that it vanishes identically 

i f  two or more electrons are in the same state and it therefore auto- 

matically includes the requirements of the Pauli exclusion principle. 

Although (10) is composed of one-electron functions, its anti- 

symmetr ic  character precludes independent motion of the electrons. The 

motion of each is correlated to the motion of the others and this is the 

result of the Pauli principle rather than electrostatic effects. 

The total kinetic energy operator is now 

Its operation on the function (10) yields a simple sum of energies of the 

one electron functions 

The average kinetic energy is therefore unaffected by the symmetry of 

the total wave function since the same result would be obtained i f  ?Tr 

were taken t o  be a simple product of one electron functions. 

The average value of the  coulomb interaction term is affected by 

the symmetry of the wave function. Letting (9) operate on (10) leads to 

a summation of two sets of terms 

The first set of terms gives the  usual coulomb energy; the second set 

gives the exchange energy which is a direct result of the use  of a n  anti- 

symmetric wave function. Whether the exchange energy will be positive 
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or negative depends on the form of the # 
made. 

no general prediction can be i' 

B. Band Theory and Brillouin Zones 

In the previous section we were concerned with perfectly free 

electrons, i.e. , those described by a Hamiltonian which contained only 

kinetic energy and electron-electron interaction energy terms. Let us 

now introduce a potential energy a s  viewed by an electron in  a perfect, 

semi-infinite crystal. This potential will be periodic with a period of 

the lattice such that 

i 
I 

where < is a primitive translation vector of the lattice. 

potential is periodic, the Hamiltonian operator will also be periodic 

with 

Because the 1 

A -  
Now we introduce a symmetry operator T ,  (r ) , which translates the crystal 

through the vector R in the manner 
1 

I j 
(1 7) 

The elements T belong to the translational group of the crystal and by 
j 

virtue of the above, they commute with the Hamiltonian. Then, any non- 

degenerate energy eigenfunction of H is a l so  a n  eigenfunction of T. If 

T is an  eigenvalue of T ,  the eigenvalue equation can be written as 

I 4 

A+ 4 4 

T , r = r + R  . 
A 

h A 

h 

0 

Application of the translation operator a second t i m e  leads to 

h 
Repeated application of T N t i m e s  gives the result 
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T $6 = qF+ Nfii . 
0 

Now, the periodic boundary conditions imposed earlier required that 

and therefore 

or 

N T = 1  
0 

T =  
0 

The eigenfunctions 
d A 

A 
of T must change only by the complex phase factor 

when r-goes to (r- + F) and must be of the form 

with u-fl possessing the periodicity of the lattice. k 
Although Bloch was the first person to apply (24) to an  electron 

in  a crystal ,  and this function is known as a Bloch wave, the purely 

mathematical result  had long been known to mathematicians as Floquet's 

theorem. Details of the theorem may be found in moderately recent 
4 literature. 

It is interesting t o  a sk  what the allowed energy spectrum looks 

like now that a periodic potential has  been included in the Hamiltonian. 

An often quoted example is the Kronig-Penney one dimensional model. 

The periodic potential of Figure 4 is postulated with heights V and 

widths b, and regions of zero potential of width a. 

the general solution to  the Schroedinger equation is 

5 

0 
In the latter regions 

4E. T. Whittaker and G. N. Watson, Modem Analysis, American 

'F. Seitz, The Modern Theory of Solids, p. 281, McGraw-Hill 

Ed. , p. 412 ,  Cambridge U. P., New York, 1943. 

Book Co., New York, 1940. 
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Figure 4 

Kronig-Penney one-dimensional model . 

-(a+b) -b 0 a o+b XIc 

Figure 5 
The allowed values of pa  given by equation (30) 

are shown by the heavy line segments on the a axis. 
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1/2 
(25) J r l  = A cospx + B s inpx;  /3 = (2mE/E2) 

In the region of constant potential Vo, the solution is 

(26) $r2  = C coshyx + D sinhyx; y = [ 2m(V0 - E)/lr2] 

There is the usual requirement of continuity of wave function and its 

derivative at x = a and the additional boundary condition because of 

periodicity that 

1/2 . 

I ik(a + b) ' 
$ 2  ( a + b )  = e  $rp . 

Substitution of (25) and (26) into (27) and solution of the determinantal 

equation leads to 

2 2 (28) cos k(a + b) = cospa coshyb + [  (y - )/2py] s inpa  sinhyb. 

Equation (28) defines the allowed values of energy, but the example may 

be simplified by letting V approach infinity but in  such a way that the 

product bV remains finite. By defining the quantity 
0 

0 

2 
P = l im  (mabV /" ) 

0 (29) 

b - 0  

v -* 

we see that in the l imi t ,  (28) approaches 

0 

(30) cos  ka = (P/pa) s inpa + cospa . 
Figure 5 is a plot of the right side of (30) as a function of pa  with a 

fixed value of P = 3m/2. Since the value of the cosine term can only lie 

between f 1, it is seen that only certain bands of energy are allowed and 

these are separated by regions of forbidden energies. If P is s m a l l  the 
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forbidden regions disappear, whereas if P approaches infinity, the 

allowed values of p a  reduce to the points n r ,  (n = 1, * 2 ,  - - - ). 
P can be considered as indicative of the degree of binding of the 

electron. With P = 0 ,  perfectly free electrons are represented with no 

forbidden values of energy. As P approaches infinity, there is no 

energy dependence on k, and t h e  electron is completely bound. 

Advancing to a three dimensional latticb we proceed to determine 

those values of wave vector for which a discontinuity in energy can be 

expected. To this  end it is convenient to work with the reciprocal 

lattice. 
4 - e  

We let the vectors a b , c be the primitive translations of 
1' 1 1 - 4 -  

the crystal lattice. Reciprocal lattice vectors a 2 ,  b2,  c2 are defined by 

the following relations 

- 4  4 4  4 4  

a .a - b ob = c 1 - c 2 =  1 1 2 -  1 2  (31) 

* b  = a2.c1 = bZ-cl  = b2*al = c .a = c 2 * b l  = 0 a2 1 
-c 

The vector; is perpendicular to the plane ofx and c and is 2 1 1 

-..c d 

Similar relations hold for the other vectors b2 and c2. 
Since these reciprocal lattice vectors have the same dimensions 

the electron wave vectors, they may be considered as residing in as 
k-space. If we define a vector K a s  i 

Ki = 2a[1 a + m b + n c ] 8 l ,m,n are integers 2 2 2 (33) 

the Brillouin zone may be found directly from the equation for Bragg re- 

flection from crystalline planes: 

4- 2 I. 

(34) 2 k = K + K  = O  . 
Geometrically, the first  Brillouin zone (1st B. 2. ) is constructed as 

follows. The center of the zone i s  symmetrically located at  the point 
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+ 
k = 0. From this point K vectors are drawn and each of these is bisected 

perpendicularly by a plane. The smallest volume enclosed by the planes 

is called the 1st B. Z. In t h i s  construction any point on the surface of 

the 1st B. Z .  can be reached from one or more other points on the surface 

by translation through a vector K. The surface of the zone is therefore 

defined by planes which are mapped by k 's which satisfy (34). 

It is a l so  possible to reduce all wave vectors to ones which lie 

in  the 1st B. Z. , since a n  appropriate K can be added to any k to  give a 
k lying in the first zone, and still preserve the Bloch form of (24). If 

4 4 

4 

(3 5) 
then 

44 

But the function exp(-iK- r ) has the same periodicity as the lattice and 

the function u-(T) and may therefore be absorbed in  the latter. In this 

scheme, the wave functions may be taken t o  be multi-valued functions 
k 

of the k 's  in the unit cell of the  reciprocal lattice. These results are 

known as the reduced zone scheme and that volume in k-space in  which 

all the wave functions are considered is called the first Brillouin zone. 

For the face-centered cubic lattice, the 1 st B. Z. is defined by 
4 

the following K vectors 

(37) 

The zone is a truncated octahedron arid is shown in  Figure 6. 

It should be noted that the shape and s ize  of the B.Z. is de- 

termined solely by the geometrical parameters of the crystal and is not 

influenced by the magnitude or form of the periodic lattice potential. 

The points of symmetry shown in  Figure 6 are in  accordance with the 
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Figure 6 

First Brillouin Zone for Face-centered Cubic Lattice 

6 original work of Wigner et. al. 

at various points in the zone are discussed by Callaway in a survey of 

electron energy bands in solids. 

Symmetry properties of wave functions 
7 

If the periodic potential is s m a l l  enough to be treated as a 

perturbation, the electrons are "almost free", and both the potential and 

the function u-(r) may be expanded in a Fourier series: 
- 

k 

(39) 

4 

The coefficients v(<) and c(q) may be written as 

L. P. Bouckaert, R. Smoluchowski, andE.  Wigner, Phys. Rev. 

J. Callaway, Solid State Physics, Vol. 7 ,  Academic Press,  

6 

- 50, 58, (1936). 
7 

New York, 1958. 



where the integration is over the unit cell of volume 52. 
Upon substituting this potential, (38), and Bloch function, (39) 

8 in  the  Schroedinger equation one obtains the expression 

The term v(0) denotes the constant term in the potential. If we assume 

that all the other coefficients of the potential a re  s m a l l  in comparison to 

v(O), then we can expect the expansion of u (r) to contain a large c(0) in 

comparison to the other coefficients. On this  assumption we can drop 

the products of coefficients other than the leading ones and obtain 

k 

2 - - 2  
(43) (ET- v(O)-5 Ik + K 1 /2m) c(c) = c(O)v(K) for # 0 

f 1 I J 
and 

(44) (E;- v(o) - n k /2m) C(O) = o for E" = o 

Solution of (44) for E- and its substitution i n  (43) leads to an equation 
k- 

for the coefficients c ( K . )  in  terms of c(0): 

2 2  . 
j 

J 

(45) c(K) = -c(O) [ 2m v(<)/3521/(2k-Kj -- - K 2 ) . 
I I 

The leading coefficient, c(0) , is determined by normalization of the 

Bloch function. - 
Difficulty arises with this  approximation when the value of k 

approaches a zone boundary; at this point the denominator of (45) 

approaches zero. 

large if the corresponding v(K.) does not vanish. 

on the particular v (z )  we return to  (42) and neglect all coefficients 

except v ( r )  and c(0) and obtain 

4 

Prior to but near this  point, one of the c (K. )  will be - 1 
Focusing our attention 

I 

1 

i 
2 2  4 

(Er- v(0) - 5 k /2m) c(0) = c ( q )  v(-K? (46) 

J. R. Reitz, Solid State P h y s i c s ,  Vol. 1 ,  p.  3 0 ,  Academic 8 
Press ,  New York, 1955. 



A solution for E- is k 

where 
(48) E: = v(0) + 5 2 2  k /2m , ET;; 0 = v(0) + 5 2 - - 2  1 k + Ki]  /2m . 

1 

Equation (48) simply gives the energies of a free electron in  a constant 
0 0 --c 

potential. Now, if k is far from a zone boundary, the term (E- - Ei;; ) 

is much larger than v ( r )  and (47) has the solutions 
k 

i 

4 

In this  region of k space, we have essentially free electron energies. 

are separated by 2 1 v(<) 1 . Clearly, a gap in energy exists at the zone 

boundary and its value is twice the Fourier component for this boundary. 

It should be pointed out that an  energy gap at one boundary does 

not necessarily lead to a gap in the entire energy spectrum. If the v ( r )  

are s m a l l  enough, the gap which occurs for one direction of k will not 

occur over the same energy range for a different direction of k. 

0 0 Near a zone boundary, however, E- -E- k k' and the roots of (47) 

1 

d 1 

d 

Despite the several approximations which have been made above 

in  deriving wave functions for a n  "almost free" electron, this  type 

approach has  enjoyed remarkable success in the treatment of certain 

metals. In these cases, the conduction electrons are almost entirely 

" s "  or "p" in character, and there is no overlap of a "d" band with the 

conduction band, Aluminum , as an example , falls in this category. 

On the other hand, elements such as the noble metals, appear 

to have a "d" band which overlaps the conduction band. Under these 

conditions , the "d" band interacts strongly with the " s "  band giving 

rise to perturbing potentials sufficiently large that the s i m p l e  perturba- 

tion treatment is no longer applicable. To  determine the energy versus 
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wave vector relationship in these cases requires more extended analysis. 

An excellent summary of methods has been provided by Reitz. 9 

C. Interaction Between Electrons and Electromasnetic Radiation 

The semi-classical treatment of radiation is developed in  numer- 

ous texts 

perturbation theory leads to the following expression for the transition . 

probability per unit t i m e  between states a and b 

' l1 and will not be repeated here. The use of t i m e  dependent 

where I(w ab) represents the intensity of the incident b e a m  of radiation 

in  the immedia te  region of the energy of transition a-b, and the grad 

operator is taken in the direction of the radiation vector potential. 

Let  us  consider (50) in the band approximation where * and 'kb a 
are determinantal wave functions composed of Bloch one-electron 

functions. Since the integral in  (50) consists of individual one-electron 

operations by the grad operator, the integral vanishes because of 

orthogonality i f  j48 and 9 differ by more than one Bloch function. The 

integral also vanishes i f  the electron spins in the two Bloch functions 

differ. Therefore, the absorption or emission of a photon can change 

the state of only one electron in  the system but cannot change its spin.  

a b 

If the two Bloch functions which differ in ( S O )  are labelled $- k 
and $7 , the integral reduces to k 

(51) Ju; e e grad u~ 
-4 

- ik - r  i q or 

4 -  

[grad u c  + 
ie - k) - r  = ju; e 

J. R. Reitz, op. cit. 

L. I. Schiff, op. cit. 

9 

10 

t i q e  r ik UT] e k 

"D. Bohm, Quantum Theory, Prentice-Hill , Inc. , Englewood 
Cliffs,  N.  J. 
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All  the terms in (51) have the periodicity of the lattice except the ex- 

ponential term, so the expression may be written: 

4 A -  -c +.-,+ 4- 

i (l?+q-k) (r-r .) * A 

1 [grad u t +  ik' u-;] d 7  
r i S e  i k k i 

i(k '-k+q)-r 
(52) e 

i 

where each integral covers one unit cell of the lattice and 7 connects a i 
corner of this cell with the origin of coordinates. But the exponential 

term in the sum, exp i(? + q  - k)*ri, vanishes unless 
+ ---4 

* 4 4 4  

(53) k + q - k = K  , 

Now, even at wavelengths as short as 100 A the magnitude of q is only 
6 8 6 X 10 whereas a typical value for K is 3 X 10 , so q can be neglected, 

and we are left with the requirement that the transition probability 

vanishes unless  
-c 4 4  

(54) k ' - k = K  . 
This result restricts all transitions to "vertical" ones in the reduced 

zone scheme as shown in Figure 7. 

Figure 7 

"Vertical" Transitions in Reduced Zone Scheme 

Thus far we have assumed that the incident radiation is polarized 

and incident upon a single crystal. The grad operator of (50) is that 

component of the gradient operator which lies in the direction of the 
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vector potential A. 

ation where the direction of A is randomly oriented in a plane which 

lies at right angles to the direction of the propagation vector 77. 

Let u s  now consider the case of unpolarized radi- 
-c 

4 

4 4  

We make the dipole approximation by equating exp (iq r) with 

unity and rewrite the integral of (SO) as a matrix element of momentum: 

From matrix theory we have the result that 

and we can write the integral in terms of that component of the radius 

vector which is in the direction of the vector potential: 

In terms of this matrix element, the transition probability becomes 

For totally unpolarized radiation, one must consider the angle 

But in a crystal, the 
4 

ab' between the direction of 

vector 

element of (58) as 

and the vector (r)  
4 

can assume all directions , so we can write the matrix 

(59) 
2 4 -c 

where is the angle between A and (r)ab, and cos vis averaged over 

all directions in three dimensional space. Under these conditions the 

transition probability becomes 
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D. Band Structure and Optical Constants 

Given an incident beam of radiation which can produce interband' 

transitions, the rate at which energy is removed from the beam is: 

dW 2 -=(TE = H O P  dt 

where 

(T = that conductivity related to transitions 
2 E = t i m e  average of the square of the electric field 

N = number of electrons which are permitted (by delta functions) 

to  make the transitions 

P = transition probability per unit t ime  

When the proper substitutions are made in (61), the solution for 
1 2  conductivity is 

4 4  44  

(62) (T = e h  c I S ,  u- e 
ik' Ord7l2 grad u-, e * -ik*r 2 

k 2 4 ~  v m  k,K 

From Chapter 11, Equation (8) 8 we had the result 

(T = n k v  

where n and k are quantities which can be obtained experimentally from 

reflectivity measurements. Thus, if we concern ourselves with a 

wavelength region where conductivity is due largely to interband tran- 

si t ions,  we have a n  experimental method of evaluating the sum in (62). 

If however, the transition probability term in (62) is not highly 

we can use  the experimentally determined nk product dependent upon 

and (62) to ascertain the number of electrons involved in transitions at 

a given wavelength. With this analysis we can gain some information 

regarding the band 

1 2 ~ .  Seitz 

structure of the metal being irradiated. 

, OP. cit., P. 651. 
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A brief examination will now be made of the consequences of 

the delta functions found in (62). 

As an example let us consider the case of the "almost free" 

electrons discussed earlier. Let the wave vectors of the ground and 

excited states be r a n d  2 respectively, then from (54) 
4 4 -  

k' = k + K. 
The energy difference between the two states will be very nearly 

with a corresponding frequency of 

The angle /3 is that b e t w e e n z  and < The absolute value of -it is 

l " 1  - 
2 liq cosp 

l3C. mttel, OP. cit., p. 314. 

4 

For a given K and y 8 /3 can range from zero, (or P i f  the numerator of 

(65) is negative), to a value which produces kf on the Fermi surface. 

(Transitions out of ground state cannot occur for states with k > k  since 

these are unoccupied. ) Clearly, then, states from which transitions can 

occur lie on a d isc  in k-space. The vector K is perpendicular to this 

d i sc  and passes through its center. An example of this situation is 

shown in Figure 8. The figure presents a montage of two cross sections 

of the 1st B. Z. for the face-centered cubic lattice. Centered in  the 

zone are concentric spheres representing different energy levels. The 

largest inner sphere denotes the Fermi surface with an energy of 5.5 ev. 

The volume enclosed by the Fermi surface is one-half the volume of the 

1st B. Z. as is the requirement for any mono-valent metal .  l3 Three sets 

of d i sc  radii are drawn, one set for each of the directions (100) , (110) , 

f 

4 
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12 14 161820 24 28 32 

Figure 8 
Discs  in  k-space from which inter-band transitions can occur. 

This example is for "almost free" electrons 
in a F.C. C. lattice. 
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and (111). These se t s  correspond to transitions involving the vectors: 

re s pectively . 
Each d isc  radius is labelled with the energy required for a transition in 

the appropriate direction. For instance, a 1's ev. photon could produce 

transitions in the (100) and (111) directions but not in  the (110) 

direction. 

In this example, a spherical Fermi surface gives rise to flat 
4 

discs in k-space. If, instead, the Fermi surface departs from sphe- 

ricity because of sizeable energy gaps at the zone faces, the d isc  will 

no longer be flat and may become warped. 

Evaluation of (62) for conductivity amounts to counting those 

electrons which are eligible for transitions at a given wavelength and 

weighting the count by a factor related t o  the transition probability of 

each electron. In this interpretation, (62) may  be written as: 

where 

n- = N = total k 
& 

n- ~ 7 -  k k k  
4 4  

k,K 

number on that disc corresponding to 
& 

k a given K 

I * -ik*r lk' * r  
P+-= 1 S u r  e grad u c  e dT1 . k' k 

An evaluation of (66) is thus reduced to a measure of N and $K N can 

be obtained from the areas of the discs and if  P4-were independent of 

k, the problem would be simplified considerably. 
k'k 

4 
r 

If we consider electrons i n  a single crystal influenced by plane 

polarized radiation which induces transitions from state 3;'to k + K, the 
&.-)  



14 effective mass tensor can be written as 
4 4  4 4  <TIpiI k + K > < k  + K  I p . I r >  2 

(67) = U S  +; 

For a n  electric field oriented in the x direction (67) becomes: 

4 E+ +-E- 
K k + K  k m i j  

But the effective mass is also related to E(k) by 

and r) 

m m a 'Ek 
m xx ?i2 ak 

(70) (-* ) = - - 2 .  
X 

Combining (68) and (70) leads to 

In a polycrystalline material with random crystal orientations the grad 

operator of (71) cannot be taken i n  the x direction only but must be 

averaged over all directions as was done in  Equation (59), with the re- 

sult  : 15 

2 
= 1  . m a E  + -  - i;' (72) - 

67r2rn vziT 3ti2 8k2 

is an average value taken over all possible a 2  E In this  expression, - 
+ 8 k2 

directions of I k 1 and is indicative of the average effective m a s s  of those 

C. Kittel, op. cit. , p. 288. 

F. Seitz, op. cit. , p. 650. 

14 

15 
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- 
electrons which lie a distance Ikl from the center of the Brillouin zone. 

If we have a situation where this term is independent of 

will be independent of r a n d  the terms of this sum can be assumed to be 

independent also. 

then P- - k ' k  

Returning to the example given in Figure 8, we make  the 

assumption that the effective mass of the "almost free" electrons is 

constant over the range k = 0 to k = kf. This assumption is valid i f  

E(G goes as kn in this  range of k-space and the value of n is very 

nearly 2. Under these conditions we  can proceed to evaluate (66) as a 

function of wavelength, keeping P t  -. as an unevaluated constant. 

. 

k k  
To obtain the total number on a d isc  we need the area of the 

4 

d i sc  and the density of states in k-space. Recalling that kx = 

2m /L and k = 2m L , we canwrite 
X Y J 

n 

( 7 3 )  dk dk =- 4n' dn dn = 2nkdk . 
x Y L2 X Y  

Since each position in  k-space can be occupied by two electrons, one 
with spin up and one with spin down, the total number will be related to 

the d isc  area,  A(k) , by 

(74) 

Since 

tion one must 

2 d 3  n/a, six 

n 

(66) is summed over all K consistent with the delta func- 

also consider that there are eight K vectors of length 

of length 4n/a , and twelve of length 2 48 n /a for a face- 

, 

centered cubic lattice , (Equation (34) # Chapter 111). 

With the aid of the above information, the conductivity of the 

example of Figure 8 was computed for wavelengths of incident radiation 

from 3 0 0 A  to 2500A.  The results are given in Figure 9. The lack of 

character in this curve is largely due to  the fact that a spherical Fermi 

surface was assumed. If the surface were bulged sufficiently in  the L 

direction, for instance,  contact between the surface and zone face 

would occur. A s  we shall see later, such a distortion would give rise 



. 
36 

0 



37 

to higher transition probabilities from states near the zone surface and 

therefore a higher conductivity to photons of energy around 5ev. or 

2400A. This effect would also be observed at other wavelengths for 

which a d isc  contacted or c a m e  near a zone face. 

In this respect,  therefore, the optical constants, n and k, can 

be effectively utilized to gain some information as to the band structure 

of a metal .  



CHAPTER IV 

EXPERIMENTAL 

A. Results for Pure Silver 

RESULTS AND DISCUSSION 

Measurements of reflectivity for four different angles of inci- 

dence over the wavelength range 304A t o  1671A were made on silver 

f i l m s .  Representative results are plotted in Figure 10  and are given in  

numerical form in  Table I. 

From these data the optical constants n and k were determined; 

these values are also given in Table I. Figure 11 shows the results of 

using Eqn. (I1 - 8) to calculate conductivity. In contrast to the free 

electron conductivity, silver conductivity displays sharp peaks at 600A 

and at approximately 300A. Since the Drude conductivity in the wave- 

length range considered here is less 

can be assumed that the effects of interband transitions predominate. 

t i m e s  the observed values, it 

A computation of conductivity for silver was made, using the 

16  
theory developed in 111-D. A Fermi surface and band structure based on 

the theoretical calculations of Segall 

Segall derived the E(k) relationships of silver for two different po- 

tentials. One potential was determined from the free ion Ag- Hartree 

functions , (no exchange energy considered); the other was derived from 

the Hartree-Foch free ion functions calculated by Worsley. l7 The first 

potential gave energy gaps of 5 .2  and 4.3 ev. at the points X and L 

respectively with the p-like states at these zone boundaries lower in 

were used in  this computation. 

16B. Segall, "Theoretical Energy Band Structures for the Noble 
Metals", General Electric Report No. 61-RL-(2785 G), July 1961. 

17B. H. Worsley, Proc. Roy. SOC., London, A247, 390, (1958). 
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TABLE I 

SILVER REFLECTIVITY DATA 

A - A  e RBm RBk %R n k 

304 

406 

461 

584 

735 

932 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

57.0 
38.5 
34.1 
32.4 
32.5 

67.8 
48.0 
42.2 
40.6 
40.6 

80.5 
41.0 
27.0 
23.3 
23.1 

64.6 
23.1 
11.4 
7.8 
7.2 

96.2 
36.6 
18.9 
13.1 
12.0 

41.8 
19.2 
12.5 
10.2 
9.4 

35.0 
32.0 
32.0 
31.4 
31.5 

43.7 
40.9 
40.4 
40.0 
40.2 

21.5 
20.4 
20.1 
20.0 
19.8 

2.8 
2.2 
2.1 
5.8 
1.8 

4.5 
3.6 
3.6 
3.6 
3.6 

7.6 
6.8 
6.2 
6.0 
5.9 

29.5 
9.5 
4.6 
4.5 

29.6 
7.5 
2.5 
1.7 

34.9 
11.7 
5.6 
5.6 

33.8 
15.1 
9.4 
8.7 

16.7 
16.7 
10.4 
9.2 

36.3 
18.4 
12.3 
10.2 

0.93 

0.88 

0.90 

1.10 

1.10 

1.18 

0.41 

0.24 

0.40 

0.63 

0.69 

0.77 
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TABLE I (Continued) 

SILVER REFLECTIVITY DATA 

A - A  8 RBm RBk %R n k 

1048 D 68.5 2.1 1.19 0.59 
70 25.0 1.5 35.4 
50 12.0 1.5 15.8 
30 7.4 1.5 8.9 
10 6.1 1.5 6.9 

1216 

1311 

1470 

1671 

D 90.5 18.4 1.26 0.49 
70 37.5 13.2 33.7 
50 21.9 12.3 13.3 
30 16.9 11.5 7.5 
10 15.4 11.1 6.0 

D 82.8 21.2 1.09 0.45 
70 38.0 17.0 34.1 
50 24.1 16.0 13.1 
30 19.8 15.6 6.8 
10 18.5 15.0 5.7 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

62.9 
23.0 
9.9 
5.3 
4.1 

85.0 
45.0 
25.1 
16.2 
13.2 

20.0 
7.6 
4.1 
2.9 
2.0 

10.2 
6.8 
5.0 
4.2 
3.8 

1.02 0.45 
35.9 
13.5 
5.6 
4.9 

0.87 0.67 
51.1 
26.8 
16.1 
12.6 
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energy than the s-like states. By adjusting the volume enclosed by the 

Fermi surface to be one-half the volume of the B.Z., he determined that 

the Fermi surface of the first potential contacted the zone surface at L 

but the neck diameter was greater than observed values18 by about 40 

per cent. Also, on the basis of other data,  the-d-bands appeared too 

high by about 2 ev. The second potential gave a similar band structure 

but the gaps at X and L were 3,O and 2.4  ev. , there was no contact at . 

L, and the d-bands appeared to be too low. Segall offered arguments as 
to why placement of the d-bands approximately midway between the two 

calculated positions should yield the correct E(k) structure, We have 

therefore used an  E(k) which is a n  average of the two determined by 

Segall. 

Since there are no theoretical calculations or other evidence 

available for the higher energy region, we have assumed free electron 

energies above 20 ev. and let the gaps approach zero at high energies. 

Justification for these two assumptions will be made later, The E&) 

adopted for this computation is shown in Figure 12 and the Fermi surface 
compatible with this  E(k) is given in Figure 13. 

A computation was first made in which Pj-,r was assumed to be 
constant over all occupied states including those immediately adjacent 

to the zone faces, Disc areas were determined graphically in the 

following manner, First, a rvec to r  which could be associated with a 
transition was selected. Then, for a given wavelength, two values of 
k were located which differed by ?and which were separated in energy 

by an amount corresponding to the given wavelength, Selection of 

sufficient pairs of ? s which satisfied these requirements defined the 

area in k-space from which transitions could occur. This process was 

repeated for different wavelengths over the region of interest and for a 

-.) 

'*The Fermi Surface, edited by W. A. Harrison and M. B. Webb, 
John Wiley and Sons, Inc. , New York, 1960. 
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fixed E Next ,  a different c w a s  selected and different areas were 

again determined for the various wavelengths. This procedure was 

continued until the supply of r ' s  which could satisfy the delta function 

was exhausted. Examples of the areas so delineated can be seen in  

Figure 13. Each dotted line indicates the area from which transitions 

can occur for the photon energy given immediately above the dotted 

line. I t  should be noted that only transitions from conduction to ex- 

cited bands was considered. 

In this first computation, therefore, all the areas determined in  

this  manner at a particular wavelength were simply summed, i. e. , a 
count was made of all electrons eligible for transitions at a given 

photon energy. This sum was used in Equation (66) and a solution for 

(J was obtained with P y -  held constant. The results of this approach 

are given in  Figure 11 and Table I1 for comparison with the measured 

conductivity. 

k k  

It is seen that general agreement is obtained in this  case if 
5 -2 P- -has a value of 10 c m  . This is particularly true in the range 

of 700 to 1700A or 7.3 to 17.6 ev. , and aside from discrepancies in the 

heights and depths of peaks and valleys, general agreement extends to 

the shortest wavelength studied, 304A. A look at Figure 13 shows us  

that the higher energy transitions occur mostly from states near the 

center of the zone while the lower energy ones occur from states 

generally farther from the zone center. This condition, though not con- 

k '  k 

clusive in itself, can be taken as evidence that P--is a slowly vary- 
4 k 'k  

ing function of k, 

We consider now those discrepancies between theory and ex- 

periment in the wavelength region below 700A and attempt to adjust 

P- -, using the sum rule given in Equation (68). k '  k 
Analytic expressions derived for E(k) in the X and L directions 

are : 
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TABLE I1 

I 

DATA USED IN SILVER COMPUTATION 
(EQUATION 66) 

300 

400 

500 

600 

700 

800 

900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

1700 

18.2 

16.4 

13.7 

12.8 

11.1 

8.9 

6.0 

3.1 

1.8 

0.9 

0.5 

0.2 

0.1 

22.6 

19.0 

20.5 

20.5 

17.6 

14.8 

12.8 

11.2 

9.4 

8.0 

6.5 

5.3 

4.4 

3.5 

2.9 

17.3 58.1 

0.2 35.5 

34.2 

33.3 

28.7 

23.7 

18.8 

14.3 

11.2 

8.9 

7.0 

5.5 

4.5 

3.5 

2.9 

28.4 

23.1 

27.9 

32.6 

32.8 

31.0 

27.6 

23.3 

20.0 

17.4 

14.8 

12.6 

11.1 

9.1 

8.0 

The columns headed A(K) give the area in k-space in  units of 
2 2  

T /a . 
The subscripts on the K 's indicate direction in  k-space. 
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O<k<l. 1 

E(k) = 1.31k + 2.2k - 0 .21 , l . l<k< l .8  

2 

2 

(1) E(k) = 0.51k + 3.1, 
X direction 

-5 17.3 (2) E(k) = 2.31k2 - k +  2.5 - 5.4X10 k - 

L direction 
for O< k< 3. 

i 

These E(k) were substituted in Equation (68)' to obtain the results of 

Figure 14 for transitions from the conduction t o  the excited bands. In 

this we see that the term which contains the sum of P y v v e r  all i?s is 

essentially constant over most of the occupied states and shows appre- 

ciable change only near the point of contact at the center of the hex- 

agonal face. In a first approximation, then, the sum of Py-can be 

assumed constant for all k's except those near the point of contact. 

k k  

k k  
4 

Taking these results into consideration, a second computation of 

conductivity was made. In this,  the second curve of Figure 1 4  was 

averaged over the range 1.3< k< 1.73 and the s m a l l  areas in the "neck" 

of the Fermi surface were multiplied by this average. As the form of 

Figure 13 suggests,  only transitions involving energies around 40, 20 

and less than 7 ev. were affected. The result of this correction was to 

reduce the discrepancies between calculated and measured conductivity 

as is indicated in Figure 15. A secondary peak now appears in the 

theoretical results at 600A in agreement with the measured values. It 

appears,  therefore, that this observed peak is not due to transitions 

from some other band such as perhaps the d-band, but to a large P",- k k  
near the zone boundary of the conduction band. 

Since the observed and calculated widths of this peak are equal, 

and since they coincide in wavelength, we have evidence for the valid- 

i ty of 1) the assumed area of contact of the Fermi surface and 2) the 

assumed E(k) at high energy, i. e. , if E(k) at high energy did not go as 
2 2  fi k /2m, this secondary peak would be calculated at a different wave- 

length. 
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On the basis of these results, the evidence for the s ize  of gaps 

a t  high energy is not clear. The minimum in conductivity between 300 

and 400A is at least in part due to the  structure of the conduction band; 

there are simply fewer electrons available for transitions in this  energy 

region. If a gap of a few ev. exists in the X direction at 40 ev. and in  

the L direction at 30 ev. , we can expect minima in  conductivity at 330 

and 440A. A gap in the K direction at high energy would create effects 

outside the range of our observation. The fact  that the measured mini- 

mum at 400A is lower than the  calculated value suggests the presence of 

a high energy gap, but without more experimental data than is now 

available, nothing quantitative can be deduced. At any rate, the in- 

clusion of a s m a l l  gap at high energy would not appreciably affect the 

results considered here. 

Although our experimental data ends at 1671A, it is interesting to 

examine the theoretical model at longer wavelengths. In Figure 13 we 

see that transitions from conduction to excited band will continue in the 

L direction down to a photon energy of 3.3 ev. Although these originate 

from discs  of s m a l l  area,  they are in a region of large P--,-and should 

contribute to  another peak in conductivity beginning around 1800 A and 

ending abruptly a t  3700A, (3.3 ev. 1. In this s a m e  range, transitions 

can occur from the d-bands to unfilled states i n  the conduction band. 

The E(k) structure of Figure 12 predicts the following 

k k  

X to Fermi level - - 3.2 ev. , 3850A 

L to Fermi level - - 3 . 1  ev. , 3980A 

K2 to Fermi level - - 3.4  ev. , 3630A 

5 

3 

as the minimum energies associated with these transitions, and very 

nearly the same l imi t  as conduction to excited band. 

energy change to  be expected in  a d-like to  p-like transition should 

occur a t  X to  X with 8 . 2  ev. , (1500A). Since the upper and lower 

l i m i t s  of these two effects very nearly coincide, only one peak should 

The maximum 

3 4' 
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be observed in silver conductivity in the range of 1500 to  4000A. The 

experimental work of Ehrenreich and Philipp' 

this extension of the theory. They report a peak in silver conductivity 

centered at approximately 2000A with edges at 1500 and 3700A, in  con- 

trast to copper which has  these two peaks well separated in wavelength. 

provides corroboration of 

On the basis of these results one can conclude that the E(k) 

structure and Fermi surface derived from Segall's calculations are 

essentially correct, and that this approach to the computation of con- 

ductivity is basically sound. The u s e  of the disc  model reduces much 

of the ambiguity previously associated with interpretation of the optical 

constants in the far ultraviolet. 

B. Silver-Indium Alloy 

To  observe the effects of a change in the electron/atom ratio, 

a f i lm  which contained 10.0 at . % indium and 90.0 at . % silver was 

studied. 

Indium was chosen as the solute because of its proximity to silver in 

the periodic table and its possession of three valence electrons. With 

this choice of solute and concentration, current binary alloy data in- 

dicate that the alloy retains the  f. c. c. structure of silver, and thus , 
the same Brillouin zone. Under these conditions, it was felt that 

optical data could be of help in resolving questions regarding the band 

structure of binary alloys. The  history of this problem will be reviewed 

briefly. 

by Kittel. 21 "Hume-Rothery first drew attention to the importance of 

(The preparation of alloyed f i lms  is discussed in Chapter V.) 

20 

Derivation of the Hume-Rothery rules for alloys is summarized 

"H. Ehrenreich and H. R. Philipp, Phys. Rev. , 128, 1622, 
(1962). 

2oM, Hansen, Constitution of Binary Alloys; McGraw-Hill Book 
Co. , Inc. , New York, 1958. 

L I  C. Kittel, op, cit. , p. 325. 
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the average valence electron/atom ratio as a kind of universal param- 

eter in  the description of the properties of alloys. He  was concerned 

with the occurrence of certain alloy structures at a definite electron/ 

atom ratio. . . ". 
Table I11 gives representative data concerning these remarks. 

TABLE I11 

ELECTRON/ATOM RATIO AT a-PHASE 
BOUNDARY FOR SEVERAL ALLOYS 

Alloy 

CuZn 

CUAl 

CuGa 

c u  si 
CuGe 

AgZn 

AgCd 

AgAl 

AgIn 

e/a 
1.38 

1.41 

1.41 

1.42 

1 . 3 6  

1.38 

1.42 

1.41 

1 . 3 6  

"The Hume-Rothery rules find a simple explanation on band 

theory in the approximation of nearly free electrons. Jones pointed out 

that the observed l imi t  of the a-phase (fcc) occurs very close to the 

electron concentration of 1 . 3 6  for which the inscribed Fermi sphere 

makes contact with the Brillouin zone surface for the fcc lattice. 

observed electron concentration of the P-phase (bcc) is close to  the 

concentration, 1.48, for which the inscribed Fermi sphere makes 

contact with the Brillouin zone surface for the bcc lattice.. . . 

The 

"It is apparent that there is a n  intimate connection between the 

electron concentration at which a new phase appears and the electron 

concentration at which the Fermi surface makes contact with the 
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Rrillouin zone boundary. The general explanation of the as sociation is 

that i t  is expensive energetically to add further electrons once the 

filled states contact the boundary. Additional electrons can be accom- 

modated only in states above the energy gap characterizing the boundary 

or in  the states near the corners of the first zona. The number of states 

near the corners falls off markedly a s  a function of energy. In this 

circumstance it is often energetically favorable for the crystal structure 

to change, the final structure being one which contains a larger Fermi 

surface, 

"The transformation from fcc to bcc is illustrated by Figure 16 

showing the number of s ta tes  per unit  energy range as a function of 

energy, €or the fcc and bcc structures. It is seen that as the number of 

electrons is increased, a point is reached above which it is easier to 

accommodate additional electrons in the bcc lattice. 'I 

E -ev 

Figure 16 

Density of States, g @ ) ,  for fcc and bcc Lattices, 
as a Function of Energy 

This simple and elegant explanation of the Hume-Rothery rules 

had to be either discarded or severely modified when the accumulation 

of experimental and theoretical work later pointed to the fact that the 

Fermi surface contacts the zone boundary for many metals in  the pure, 

unalloyed state. It appears almost without question now that contact is 
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achieved at the hexagonal face for t h e  noble metals copper, silver, and 

gold. Independent measurements and interpretations of the anomalous 

skin effect, de Haas-van Alphen effect, cyclotron resonance, ultrasonic 

attenuation, and the optical properties all s e e m  to confirm the latter 

statement. 

At this point a prevailing theory was the one of rigid band 

structure, i. e. , that the E(k) relationships of a metal were unchanged 

upon alloying with another metal, at least up to those concentrations of 
22 solute which precipitated a phase change. In 1958, Cohen and Heine 

contradicted this concept with the argument that upon alloying: (1) the 

E(k) must change, (2) the Fermi surface pulls away from the point of 

contact and becomes more spherical, and (3) the energy gaps at the zone 

faces either increase or decrease according to whether the s-like state 

at the  face was originally lower or higher than the p-like state. Much of 

their argument was based on considerations of the s-p excitation energy 

. In partic- of the free atom and on the specific’heat data of Rayne 

ular, they proposed that E < Es for copper and silver but Es< E for 
P P 

gold, and that upon alloying this  gap decreases for copper and silver but 

increases for gold. Their calculations give an energy gap at the point 

L of 0.10 ev. for silver, in  marked disagreement with the value of 3.3 

ev. obtained by Segall. 

23,24 

Biondi and Rayne, 25 in 1959, performed optical absorption meas- 
urements on a series of a-brasses  over the wavelength range 0.23-4.0 

microns using electropolished bulk specimens. In the vicinity of 4000A, 

their data can be interpreted as confirmation of the Cohen-Heine model. 

Some of their results are reproduced in  Figure 17. 

M. H. Cohen and V. Heine, Adv. in Phys., 1, 395, (1958). 

J. A. Rape, Phys. Rev., 108, 22, (1957). 

J. A. Rape, Phys. Rev., 110, 606, (1958). 

22 

23 

24 

25M. A. Biondi and J. A. Rayne, Phys. Rev., 115, 1522, (1959). 
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80 c A cI A-pure Cu 

2 0  :i" 8 - 15% Zn 

C-30'70211 

30% e- I vuu 

Figure 17 

Optical Absorptivity vs . Wavelength 
(Biondi , Rayne) 

For pure copper, we can attribute the  peak at 3000A to transitions from 

conduction to excited band, L2' to L and the peak at 5700A to transi- 

tions from the d-band to the p-like states immediately above the Fermi 

level. A shift of this first peak to longer wavelengths as in curves B and 

C can occur only i f  the gap, L2' - L1, decreases as proposed by Cohen 

and Heine. At the s a m e  t i m e ,  this alloying increases the electron/atom 

ratio and the Fermi level. Thus, since greater energy is required for 

d-band transitions, the second peak can be expected to move to  shorter 

wavelengths. 

1 

Despite these results , their infrared absorptivity data cause 

Biondi and Rayne to conclude that the Fermi surface becomes more dis- 

torted upon alloying, necessitating an  increase in gap. 

In 1961, ZimanZ6 reviewed the state of affairs and advanced 

some views of his own. We quote some of his conclusions. 

"We have no guarantee that the electronic energy surfaces in k- 

space remain unchanged when other metals are added to a noble metal .  
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. . . Indeed, Cohen and Heine have specifically proposed that this rigid 

band hypothesis must be abandoned if we are to understand certain 

properties of the alloys of the noble metals. I t  would obviously be 

valuable to have an independent check on this point. I' 

". . . There is no serious inconsistency between the observed 

transport properties and the assumption that the energy surfaces dis- 

covered by the topological techniques remains more or less rigid when 

the temperature is raised or when the m e t a l  is alloyed with other metals. 

If there is any sphericizing effect of alloying, it does not seem enough 

to draw the Fermi surface out of contact with the zone boundary. 'I 

It was with these questions in mind that the optical properties 

of an  alloy of silver were studied. 

Reflectivity of the indium alloy versus wavelength for four angles 

of incidence is illustrated in Figure 18 and the data are listed in Table 

IV. Except for a decrease a t  304A, the  reflectivity curves for the alloy 

do  not differ greatly from those for pure silver. However, the conduct- 

ivity as obtained from the optical constants shows marked change in  

several respects. 

its alloy are plotted in Figure 19. 

For comparison the conductivity of both silver and 

Despite the reduction of reflectivity of the alloy at 304A, con- 

ductivity remains about the s a m e ;  this is another illustration of the 

shortcomings of using reflectivity alone as a characterizing parameter. 

The minimum previously observed at 380A has shifted to 450A and from 

th i s  point on to about 1200A, conductivity has  been consistently re- 

duced. 

peak at 600A, the one which had been attributed to contact of the Fermi 

surface with the zone face. 

low peak between 1200 and 1800A which was not observed for pure 

silver. 

Perhaps the m o s t  striking change is the loss of the secondary 

Finally, we find the appearance of a broad, 

At th is  juncture we have the opportunity to investigate the 

validity of the rigid band concept. I f ,  upon alloying, the band structure 
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TABLE IV 

SILVER-INDIUM REFLECTIVITY DATA 

A-A e RBm RBI< %R n k 

304 D 36.5 20.6 1.04 0.34 
70 22.4 19.0 21.4 
50 19.5 18.6 5.7 
30 19.0 18.5 3.1 
10 18.8 18.4 2.5 

406 D 49.2 19.6 0.95 0.30 
70 25.6 18.0 25.7 
50 19.5 17.5 6.8 
30 18.3 17.6 2.4 
10 18.5 17.9 2.0 

461 

584 

735 

932 

D 89.5 15.5 0.92 0.31 
70 32.5 10.6 29.6 
50 14.6 8.9 7.7 
30 10.6 8.5 2.8 
10 10.1 8.4 2.3 

D 65.0 1.8 1.00 0.45 
70 20.6 1.4 30.4 
50 8.3 1.4 10.9 
30 5.0 1.4 5.7 
10 4.5 1.4 4.9 

D 81.3 1.4 0.98 0.54 
70 29.0 1.0 35.0 
50 12.1 1.0 13.9 
30 7.3 1.0 7.9 
10 6.2 1.0 6.5 

D 57.4 7.1 0.97 0.59 
70 24.8 6.5 36.4 
50 14.5 6.4 16.1 
30 11.0 6.3 9.3 
10 10.0 6.2 7.6 
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TABLE IV (Continued) 

SILVER-INDIUM REFLECTIVITY DATA 

A - A  0 RBm RBk %R n k 

1048 D 
70 
50 
30 
10 

1216 

1311 

1470 

1671 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

92.2 
40.4 
23.9 
18.1 
16.3 

93.4 
36.1 
16.8 
10.1 
8.2 

66.5 
34.4 
23.0 
19.2 
18.1 

79.0 
38.8 
23.3 
17.6 
16.0 

84.7 
43.8 
25.0 
16.3 
13.1 

11.7 
11.6 
11.6 
11.6 
11.6 

4.1 
3.2 
3.2 
3.2 
3.2 

18.0 
16.0 
15.0 
15.0 
15.0 

30.3 
18.6 
14.5 
12.6 
12.2 

10.5 
7.4 
5.7 
5.0 
4.8 

35.8 
15.3 
8.1 
5.8 

36.8 
15.2 
7.7 
5.6 

37.9 
16.5 
8.7 
6.4 

41.5 
18.1 
10.3 
7.8 

49.1 
26.0 
15.2 
11.2 

1.04 

1.05 

1.05 

1.07 

0.85 

0.54 

0.50 

0.53 

0.58 

0.64 
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does not change, we would expect a simple growth in  all directions of 

the Fermi surface adopted for pure silver. The area of contact at the 

hexagonal face would increase and there would be a greater number of 

electrons eligible for transitions at all wavelengths. The increased e/a 

would raise the Fermi level and, as a result, cause the "d to conduction" 

band transitions to  appear at shorter wavelengths. With th i s  model ,  

the observed conductivity should be slightly greater at all wavelengths 

and the secondary peak at 600A should be retained, though broadened. 

With one exception, the experimental data do  not confirm any of 

these predictions. The exception is the appearance of the broad peak 

between 1200 and 1800A which suggests the shift of d-band transitions 

f '  to shorter wavelengths, but this could be simply a result of raising E 

It appears that the alloy data cannot be explained on the basis  

of the rigid band model. 

Let u s  now consider the Cohen-Heine (hereafter referred t o  as 

C-H) hypothesis and its consequences. The C-H Fermi surface would 

pull away from the zone face, perhaps t o  the extreme of losing contact 

entirely. Energy gaps at B. 2. boundaries would decrease and the Fermi 

surface would approach a spherical shape. These features seem to be 

the requirements for explanation of the experimental data. Reduction 

or loss of contact at the zone face would indeed require that the 600A 

peak either diminish or vanish. Also, a result of sphericizing the Fermi 

surface would be a conductivity curve more l ike  the free electron curve 

of Figure 9. That the trend is in  this direction is demonstrated by a 

comparison of the free electron and the alloy data in  Figure 20. Al- 

though the alloy curve h a s  assumed s o m e  of the character of the free 

electron curve, there is sufficient discrepancy to warrant the assump- 

tion of a Fermi surface which is still distorted but to a lesser  degree 

than that for silver. 

Utilizing these features of the C-H theory, a Fermi surface was 

estimated for the AgIn alloy. In conformity with the alloy e/a of 1 . 2 ,  
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the volume enclosed by this surface was adjusted to be 20 per cent 

greater than the volume used for silver. 

tained at the hexagonal zone face as  is illustrated in  Figure 21. The 

E(k) were adjusted for decreased gap using the formula proposed by 

Only a point contact was re- 

27 C-H: 

This formula gives the  average change in  the gap s ize  at the zone faces. 

The terms in  the brackets are obtained from the atomic term values, 

several of which are listed i n  their report, e. g. , Ag: 3.75 ev, In: 7.5 

ev, Au: 4.75 ev, and Al:  6.9 ev. The symbol z in the formula is used 

to denote the valence of the solute. Upon substitution of the values for 

silver and indium in  their formula, an average change of gap of 0.94 ev 

was obtained and the E(k) were corrected by this  amount. 

Using this  modified Fermi surface and E(k), a computation of 

conductivity for the alloy was performed in  the same manner as out- 

lined earlier for silver; these results are presented in  Figure 22 and 

Table V. A comparison of the experimental and calculated curves indi- 

cate that this choice of modified Fermi surface is not a bad one, inas- 

much as there is quite good agreement in  the wavelengths at which the 

maxima and minima occur. Small changes in  the area of contact of the 

Fermi surface have a pronounced effect on the calculated results i n  the 

range of 500 to 700A. Despite the few experimental points available in  

this range, one can conclude that the area of contact for the alloy does 

not exceed 10 per cent of that for silver. 

To make the magnitudes of the computed and measured conduc- 

tivities coincide over the range studied requires a value of P---of 

0.6 X 10 c m  in  contrast with the value of 1.0 X 10 obtained for 

silver. 

k'k 
5 -2 5 

Thus it would appear that  an effect of alloying at this  

& I  M. H. Cohen and V. Heine, op. cit. 
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TABLE V 

DATA USED I N  AG-IN COMPUTATION 
(EQUATION 66) 

309 

352 

412 

49 3 

617 

650 

714 

82 5 

1000  

1230  

1400 

1500 

1600  

16.3 

16.7 

16.2 

12.6 

10.6 

10.8 

8.1 

6.0 

3.8 

2.5 

1.6 

1.3 

1.0 

16.1 

18.7 

18.0 

18.0 

19.4 

19.9 

20.5 

18.0 

15.7 

11.9 

9.3 

8.0 

6.8 

30.7 63.1 

14.6 50.0 

0 34.2 

30.6 

30.0 

30.7 

28.6 

24.0 

19 .5  

14.4 

10.9 

9 .3  

7.8 

31.8 

28.7 

23.0 

24.6 

37.5 

36.7 

36.5 

35.0 

31.8 

28.9 

25.0 

22.9 

20.2 
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concentration is to reduce the transition probability between conduction 

and excited band by a factor of almost two. T h i s  effect appears to be 

primarily due to  the decrease of energy gap at the zone faces and can 

be qualitatively predicted by the "almost free" electron approach of 

Chapter 111. 

Recalling equations (39) and (451, we write the Bloch function 

for the case of a s m a l l  perturbing potential 

K- 
i 

U s e  of this expression to derive P- -gives the result k' ,k 

which shows that P- - should go a s  the square of the Fourier term, 
4 k' , k  - 

/2 1 1 k' k . P- - can now be written in terms of energy V(K) ,  or a s  

gaps in the form 

I E -- (AgIn) 2 
i b  

(6) P-; -fAgIn) = P- - (Ag) ' k k  k' k 

The average value of E 

reduced by the C-H formula t o  2 . 7  ev. for E 

therefore predicts the transition probability for theAgIn alloy to be less 

than that for silver by a factor of 0.56,  in agreement with the computed 

factor of 0 .60  derived from Figure 22.  

in  part fortuitous. 

in  E(k) of the conduction band in t h e  alloy also, then the simple ap- 

proach used above cannot be expected to apply exactly. 

(Ag) , from Figure 1 2  is 3.6 ev. ; this value was 
SP 

(AgIn). Equation (6) 
SP 

This close agreement is no doubt 

If it is assumed that the d-band produces distortions 

But this 



a proach do s show the general depend 

~ 
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nce of P4-- on E and the re- 
k'k SP 

sul ts  lend further support to the C-H theory for alloys. 

To summarize, we can say  that the major  effects observed as a 

result of alloying silver with indium are (1) the transition probability 

between conduction and excited bands is reduced by a factor of 0.6 for 

1 0  at . % In, (2) a Fermi surface having reduced contact at the zone 

boundary provides the proper basis for interpretation of the optical data,  

and (3) energy gaps at the zone boundaries diminish. These effects 

suggest a breakdown of the rigid band concept and support the theory 

advanced by Cohen and Heine. 

C. Results for Gold 

At the present t ime  only a limited amount of theoretical infor- 
28 mation is available for the gold band structure. 

includes a calculation for gold, but in this ,  he determined the energy at 

the symmetry  points X , r  , and L only. He points out that one should 

expect considerably more uncertainty in  the potential he has  constructed 

for gold than in the potential used for copper and silver. 

a much heavier a t o m  than the other two, the non-relativistic wave 

functions and the potential based on them will be less accurate, and, 

at present , only Hartree functions are available. Segall's results place 

the p-like states at the gaps a t  X and L lower in  energy than the s-like 

states, as for silver, but the d-bands fall below even the r 
The energies below 24 ev. at the symmetry points I?, X, and L in  

Figure 25 are those obtained by Segall. 

The work of Segall 

Since gold is 

state. 1 

The calculations of Cohen and Heine2' predict a differently 

ordered band structure. Although they make  no estimate of the relative 

positions of the d-bands, their results place the p-like states at X and 

~~~ 

2 8 ~ .  Segall, op. cit. 

"M. Cohen and V. Heine, OP. cit. 
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L higher in energy than the s-like states. 

conduction and excited bands overlap near L and the gap at L is only 

-0.75 ev. They also offer the suggestion, ' I .  . . The optical constants 

and electronic heat of gold indicate considerable distortion of the Fermi 

surface but little, i f  any contact. 'I N o  further reference is made to the 

optical constants used in  this conclusion, but they were undoubtedly 

not ones obtained in the far ultraviolet. 

Morse et al. ,30 recently reported on Fermi surface shapes as 

In their band model, the 

determined by the method of ultrasonic attenuation in  a magnetic field. 

For gold, they report a radius of contact of 0.24X10 g-cm/sec at the 

point L ,  in partial confirmation of Segall's results. Their data for other 

directions in k-space are reproduced in Figure 26. 

-19 

It was with this background of meager and contradictory infor- 

mation that the optical properties of gold were studied and efforts were 

made to interpret them in terms of band structure. 

Representative reflectivity measurements on gold f i l m s  at four 

angles of incidence and over the wavelength range 304 to 1671A are 

summarized in Figure 23 and Table VI. 

from n and k is plotted a s  a function of wavelength in  Figure 24. 

Gold conductivity a s  determined 

A conductivity computation was made from a band structure based 

on the Fermi surface reported by Morse, the symmet ry  point energies 

calculated by Segall, and an estimated E(k) between these symmetry 

points as shown in Figure 25. An E was chosen which was compatible f 
with the Morse shape and volume. The results of this computation are 

compared with experimental data in Figure 24 and are reported in Table 

VI1 . 
The computed peak at 500A has an origin different from the 

similar one observed in silver. 

surface of gold, Figure 26 shows that there is a pronounced increase 

Because of the highly distorted Fermi 

30R. W. Morse, A. Myers, C. T.  Walker, J. Accoustical SOC. 
Am., 33, 699 (1961). 



71 

I I I I I 
0 
0 

0 0 
rr) N 

0 0 
v) * 

0 
0 
QD 
0 

0 
0 
(0 
0 

0 
0 
d- - 
0 

h 
U 

0 
0 
c\i 

0 

a 



72 

TABLE VI 

GOLD REFLECTIVITY DATA 

A - A  e RBm RBk %R n k 

3 04 D 66.0 40.0 0.89 0.23 
70 41.0 34.0 26.9 
50 32.9 31.3 6.2 
30 30.0 29.5 1.9 
1 0  29.0 28.6 1.5 

406 

461  

584 

735 

932 

D 66.0 41.6 0.91 0.31 
70  45.6 38.4 29.5 
50 39.9 37.9 8.2 
30  38.1 37.3 3.3 
1 0  37.9 37.5 1.6 

D 87.8 29.5 0 .91  0.39 
7 0  46.0 25.6 35.0 
50 31.3 24.5 11.6 
30  26.5 23.0 6.0 
10  26.0 22.5 6.0 

D 75.5 3 . 0  0.98 0.67 
70  30.5 2.5 38.6 
50 15.4 2.0 18.5 
30  10.6 2.0 11.7 
10 9.6 2.0 10.5 

D 97.0 6.4 0.93 0.58 
7 0  38.4 4.3 37.6 
50 19.2 4.2 16.5 
3 0  13 .1  4.0 10.0 
1 0  11.3 4.0 8.0 

D 71.7 4.5 0.98 0 .71  
7 0  32.0 3.1 43.0 
50  17.8 3.1 21.7 
3 0  12.3 3.1 13.7 
10 10.4 3.1 10.9 
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TABLE VI (Continued) 

GOLD REFLECTIVITY DATA 

A-A e RBm RBk %R n k 

1048 D 92.0 2.0 1.05 0.69 
7 0  40.0 0.9 43.5 
50 20.5 0.9 21.8 
30 12.8 0.9 13.2 
10 10.4 0.9 10.5 

1216 

1 6 7 1  

D 89.5 1.2 1.12 0.80 
7 0  42.5 1.0 47.0 
50 23.5 1.0 25.4 
30  15.0 1.0 15.8 
1 0  12.1 1.0 12.6 

D 51.5 6.0 1.04 0.94 
7 0  28.6 4.2 53.6 
50 18.0 3.5 31.9 
30  12.9 3.1 21.5 
10 10.8 2.8 17.6 
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Energy band structure for gold. Energy values a t  
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TABLE VI1 

DATA USED FOR GOLD COMPUTATION 
(EQUATION 66, FIGURE 23) 

300 

350 

400 

500 

600 

700 

800 

900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

1700 

1800 

19.1 

17.7 

16.2 

12.8 

9.0 

4.9 

2.3 

1.5 

1.2 

1.0 

0.8 

0.5 

0.4 

0.1 

0 

20.5 

20.5 

20.5 

19.6 

15.1 

10.8 

8.6 

6.8 

5.7 

4.6 

3.7 

3.1 

2.5 

2.2 

1.7 

1.3 

1.0 

3.5 43.1 

0 38.2 

36.7 

32.4 

24.1 

15.7 

10.9 

8.3 

6.9 

5.6 

4.5 

3.6 

2.9 

2.3 

1.7 

1.3 

1.0 

21.0 

21.8 

26.4 

31.8 

26.1 

18.0 

14.2 

12.2 

11.3 

11.1 

8.8 

7.7 

6.7 

5.7 

4.4 

3.6 

2.9 
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in  the number of electrons available for transitions i n  the energy range 

20 to 30  ev. Thus, part of th i s  peak would appear even i f  the  increased 

P-- had not been considered in  this region. To shift this  peak to  600A 

requires that those d iscs  which touch the zone face near L be associated 

with lower energy transitions than presently assumed; a decrease of 

about 4 ev. would be satisfactory. The desired change cannot be 

effected by simply raising the level of I' since this  would still allow 

the 25 ev. d isc  to contact the zone face at L. The only change in band 

structure which can bring these peaks into coincidence is one which 

lowers the energy levels above L and X 
1 1' 

performs this  function while retaining the gaps prescribed by Segall. 

k'k 

12 

The dotted E(k) in Figure 25 

In the range of 300 to 800A the  magnitudes of computed and 
5 -2 measured conductivity are equal if an average value of P., -of 10 c m  

is assumed. This value is the same as for silver and would indicate 

that the transition probability between conduction and excited bands is 

the s a m e  for both metals in  this wavelength range. 

k' k 

Between 800 and 1800A we find a divergence of computed and 

measured values; the experimental data suggest the presence of trans- 

itions in this range which were not accounted for in  the computation. 

Figure 25 indicates the possibility of the following transitions from the 

d-band s: 

X t o X q l  : 15.2 ev, 810A 

X t o X 4 '  : 12.3 ev, lOOOA 

X to Ef : 11.5 ev, 1070A 

r1 t o  Ef : 7.6 ev, 1620A. 

3 

5 

5 

The first three transitions go from d-like to  p-like states near the Fermi 

level and the last goes from s-like states to the p-like states, thus the 

probability should be relatively high for these four possibilities. It 

seems not unlikely, therefore, that conductivity in  the  800 to 1800A 

range is due t o  transitions of the  two types: (1) conduction to excited 

band and (2) d and s states to unfilled states near the Fermi level. 
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In a discussion of nk curves for the noble metals, Seitz 31 

argues that the peak in  nk observed for silver at 2500A can be attributed 

to transitions from conduction to  excited bands. He then supposes that 

silver and gold have similar valence electron structures and anticipates 

a peak in the gold nk curve at the same wavelength and for the s a m e  

reason. He thus infers that the peak for gold at 4000A ar ises  from d- 

band t o  Fermi level transitions. In our interpretation which is based on 

the Segall, Morse and optical data,  the inverse situation is demanded. 

Indeed, if our m o d e l  is extended to longer wavelengths, it predicts the 

observed conductivity peak at 3700A and attributes it t o  transitions in 

the L direction which originate from the neck areas  near L, for example, 

the 3.6 ev. d isc  in  Figure 26. 

As a result of these studies one can conclude that the theoretical 

calculations of Segall are in  accord with the  accoustical  attenuation 

measurements of Morse and with the  optical constant data obtained in  

the far ultraviolet. Furthermore, the use  of the d i sc  mode l  can be of 

great value in the interpretation of optical data particularly when the 

energies between sets of bands overlap as in gold. 

D. Gold-Aluminum Alloys 

In the course of measuring reflectivity of AuAl f i l m s  it was 

noticed that at a critical concentration of aluminum , reflectivity at 3 04A 

and near normal incidence increased by a factor of approximately three. 

Several f i lms  were prepared and studied to determine as closely as 

possible the concentration at which this  effect occurs. 

Table VI11 show that the onset of t h i s  increase is associated with an  

aluminum concentration of between 22.6 and 24.6 at . % , or a n  electron 

per a t o m  ratio of about 1.47. 

The data in  

Reflectivity and condclctivity data for f i l m s  with concentrations 
slightly above and below the critical one are given in Figures 27 ,  28 and 

31 F. Seitz, OP. cit. P. 655. 
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TABLE VI11 

GOLD REFLECTIVITY AT 304A, $I = lo", FOR 
VARIOUS CONCENTRATIONS OF ALUMINUM 

FILM # wt.%Al at. % A1 e/a %R 

Au- 3 0 0 1.0 1.5 

Au-A1-8 3.4 20.4 1.41 2.2 

Au-A1-9 3.8 22.6 1.45 2.0 

Au-A1- 10 4.3 24.6 1.49 6.9 

Au-A1-7 4.9 27.4 1.55 6.1 

Au-A1-6 6.6 34.1 1.68 4.9 

Au-A1-1 7.5 37.2 1.75 6.2 
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29 and Tables IX and X. 

Somewhere in this range of concentrations a phase change 

apparently occurs but at the present time, metallurgical information is 

not complete enough to clarify the problem. We quote from a publication 

as recent as Hansen's, 

gation by thermal and s o m e  micrographic analysis as well as X-ray 

studies,  the composition of some of the intermediate phases and the 

phase relations in the range 70-90 at . % Au are still not fully known. 

On the basis of X-ray work, (8) asserted that in the neighborhood of 

75 at . % Au a phase, not found by others, (1,7), is formed peritectically, 

but there is no indication of a peritectic reaction in this  range. On the 

other hand, the occurrence of Au A1 (95.64 wt. %Au) has  been reported 

on the basis of X-ray studies (3,131 which revealed the existence of a 

phase with the structure #I -Mn. ---However, it was shown that a phase 

of the composition Au A1 does not exist, (9), and that the phase with 

the structure of p-Mn has the composition of Au A1 rather than Au A1 4 3 
(7,9). Also, (1) and (8) have claimed the compound Au A1 to exist. I t s  

structure was found to be similar to, but not completely identical with 

that of p -Mn (8,9). 'I (The references in  parentheses are Hansen's. ) 

32 
(1958): "In spite of quite extensive investi- 

3 

3 

4 

Since the concentration a t  which this  large change in reflectivity 

and conductivity occurs, (4.3 wt. %), is very near that of Au A l ,  (4.36 

wt. %), it is possible that our data are evidence for the existence of this 

phase. 

3 

The 0-Mn structure has  20 atoms per unit cell, but it is of the 

cubic system and could possibly possess a Brillouin zone similar to the 

face-centered cubic system of gold. If such were the case, we would 

have an  explanation for the similarity of conductivity curves for Au and 

the Au-A1 alloys. 

ever, since the space group of the P-Mn structure is also not fullyknown. 

This point must be left open for future study, how- 

M. Hansen, op. cit. 32 
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TABLE IX I 

GOLD-ALUMINUM REFLECTIVITY DATA 
(Au-A1-8, 3.38 wt % Al) 

A - A  e RBm RBI< %R n k 

304 D 49.5 27.0 0.83 0.27 
70 30.3 22.4 35.1 
50 22.4 20.5 8.5 
30 21.0 20.0 4.5 
10  20.5 20.0 2 .2  

46 1 

584 

73 5 

932 

1048 

D 90.7 3 1 . 0  0.81 0.41 
70 48.8 23.8 41.9 
50 32.0 22.6 15.7 
30 26.8 22.0 8 .0  
10 25.0 21.6 5.7 

D 50.5 3.8 0.90 0.63 
70 22.6 3.5 40.9 
50 12.3 3.5 18.9 
30 9.1 3.5 12.0 
10 8.4 3.5 10.5 

D 93.5 5.4 0.99 0.69 
70 37.6 4.2 37.8 
50 20.0 3.6 18.7 
30 14.2 3.4 12.2 
10 13.0 3.4 10.9 

D 91.2 14.8 1.01 0.68 
70 45.0 13.1 41.8 
50 29.0 13.1 20.8 
30 2 2 . 8  13.1 12.7 
10 20.8 13.1 10.2 

D 58.2 2.0 1.04 0.67 
70 25.8 1.7 42.9 
50 13.6 1 .7  21 .2  
30 8.8 1.7 12.6 
10  7.1 1.7 9.6 
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TABLE IX (Continued) 

GOLD-ALUMINUM REFLECTIVITY DATA 
(Au-Al-8, 3.38 wt % Al) 

A-A 8 RBm RBk %R n k 

1216 D 71.5 6.2 1.24 0.79 
70 35.5 5.5 45.9 
50 21.6 5.5 24.6 
30 15.7 5.5 15.6 
10 13.6 5.5 12.4 

1671 D 47.4 6.2 1.02 0.91 
70 26.8 4.9 53.2 
50 17.2 4.2 31.6 
30 12.5 3.9 20.9 
10 10.8 3.6 17.5 



TABLE X 

GOLD-ALUMINUM FEFLECTIVITY DATA 
(Au-A1-10, 4.3 wt % A l )  

A - A  6 RBm RBk %R n k 

304 D 
70 
50 
30 
10 

406 D 
70 
50 
30 
10 

461 D 
70 
50 
30 
10 

584 D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

73 5 

72.0 
46.4 
40.9 
39.0 
38.5 

66.2 
45.8 
38.5 
36.5 
36.1 

89.8 
45.7 
30.5 
25.2 
24.5 

74.2 
29.5 
14.2 
9.0 
7.8 

80.6 
30.9 
15.0 
9 .6  
8.0 

56.1 
41.2 
39.0 
37.7 
37.4 

43.3 
38.0 
36.8 
36.0 
35.9 

32.0 
24.0 
23.0 
2 2 . 2  
21.7 

3.9 
2.5 
1.8 
1 .8  
1.8 

3 .6  
2.5 
2.1 
2.0 
1.8 

32.7 
12.0 

8 .2  
6.9 

34.1 
7.4 
2 .2  
0.9 

37.5 
12.9 

5.2 
4.8 

38.4 
17.3 
10.2 

8.5 

36.8 
16.8 
9 .9  
8 .0  

0.94 

0.85 

0.83 

0.92 

0.93 

0.53 

0.20 

0.35 

0.58 

0.59 
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TABLE X (Continued) 

GOLD-ALUMINUM REFLECTIVITY DATA 
(Au-A1-10, 4.3 wt % Al) 

A - A  8 RBm RBk %R n k 

1048 

1216 

1671 

932 D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

D 
70 
50 
30 
10 

79.5 
41.2 

23.0 
21.0 

94.0 
40.8 
21.9 
14 .1  
11.6 

61.7 
31.2 
19.6 
14.5 
12.9 

85.3 
44.5 
27.5 
19.4 
16.4 

27. a 

19.6 
17.1 
16.6 
16.3 
16.2 

4.8 
3.2 
3.2 
3.2 
3.2 

8 .6  
7.1 
6.9 
6.8 
6.7 

12 .3  
7.5 
5.6 
4.9 
4.6 

40.2 
18.7 
1 1 . 2  
8.0 

42.3 
21.0 
12.2 
9.4 

45.4 
23.9 
14.5 
10.7 

50.5 
30.0 
19.9 
16.2 

1 .00  0.64 

1.03 0.66 

1.05 0.69 

1.14 0.92 
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E.  Results for Aluminum 

The band structure of aluminum has received considerable 

attention and is now fairly well understood. Heine33 has  calculated the 

energy gaps at zone faces using the orthogonalized-plane-wave method, 
34 (OPW), and Harrison 

approximation. Since the gaps at the boundary of the first B. Z .  are 

much smaller than the Fermi level energy, the method of Harrison 

amounts to the "nearly free electron" approximation. The calculations 

of Sega113' produce a band structure not unlike Harrison's. Al l  these 

calculations point to the fact  that the free electron E(k) prevails at all 

places in the zone with the one exception of points very near the zone 

faces, and in these areas ,  the distortion of the free electron E(k) is not 

great. 

has  shown the effectiveness of a single OPW 

A model, (Figures 30 and 31), has  been constructed which 

displays those states in  the first B.Z. from which optical transitions to 

the second zone can originate. The presence of occupied states in  the 

second zone negates transitions from a considerable volume of the first 

zone. 

states in the third zone occur at energies greater than those of our 

immediate interest, they will not be considered here. 

applies to those states which are negated in zone one to zone two trans- 

itions. 

Since transitions from occupied states of the second zone to 

The same remark 

Following methods outlined earlier, a conductivity computation 

was made with the use of this  model. 

is a curve whose character is radically different from that obtained for 

The results as shown in Figure 32 

33V. Heine, Proc. Roy. SOC. London, A240, 361 ,  (1957). 

34W. A. Harrison, Phys. Rev., 118, 1182, (1960). 

35B.  Segall, op. cit. 
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Figure 30 
Fermi surface for aluminum. 



Figure 31  
Fcrmi surface for aluminum. 
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TABLE X I  

DATA USED IN  ALUMINUM COMPUTATION 
(EQUATION 66) 

93 

300 14.6 13.9 15.0 43.5 21.8 

410 12.5 13.1 8.5 31.6 21.2 
49 0 10.7 13.1 0.0 29.8 24.0 
615 10.7 15.8 26.5 26.8 

820 8.0 13.1 21.1 28.2 

99 0 7.0 10.8 17.8 28.7 

1230 6.0 10.0 16.0 32.1 

1450 5.5 2.9 

1760 5.1 0.0 

8.4 19.9 

5.1 14.7 
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silver and gold. The onset of conductivity attributable to interband 

transitions appears at approximately 2000A and there is no extension 

into the visible region. 

It is difficult to appraise these calculations on the basis  of ex- 

perimental data. The difficulties associated with reflectivity measure- 

ments in  the far ultraviolet are many 36'37 and the few results reported 

are not in harmony. 

ments in the inclusion of oxygen atoms in  the f i l m  during the process of 

evaporation and the rapid rate of surface oxidation of the f i lm after 

evaporation of the aluminum. Resul ts  of the second effect are illustrated 

in  Figure 33 where we see the rapid increase of the optical constants as 

the f i lm  ages in a vacuum chamber. An interesting aspect of these data 

is that although both n and k, and thus conductivity, increases with 

t i m e ,  reflectivity decreases; these conditions are analogous to the ex- 

ample cited in  Chapter 11-A. 

and mend low it^^^ and by Madden.39 If we use  Madden's data a s  

The chief problem encountered in these measure- 

Included for comparison in Figure 32 are data obtained by LaVi l l e  

3 -2 reference, a value for P*-- of 2.5X10 c m  is obtained, indeed a value e 
much smaller than the l o J  which resulted for silver and gold. 

apply Equation (6) in  the form 

If we 

P C k f A l )  
(7) E SP = Esp(Ag) PG$(Ag) 

and use  the average value of 3.7 ev. for E 

E 

(Ag) , we obtain an average 
SP 

(Al) of 0.58 ev, which is in favorable comparison with 0.66 ev. as 
SP 

G. Hass ,  V.'. R. Hunter, and R. Tousey, J. O.S.A., 47, 1070, 36 

(1957) 
37 

G. Hass,  and J. E. Waylonis, J.O. S.A., - 51, 719, (1961). 
38R. L a V i l l e  and H. Mendlowitz, Phys. Rev. Lttrs., 9, 149, 

39R. P. Madden, Private Communication. 
(1962). 
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calculated by Heine. 

factor in  the determination of interband transition probability. 

Thus, it again appears that gap s ize  is a major 

F. Possible Future Work 

Since so few metals have been studied in  the far ultraviolet , 
future research in this area may proceed in several directions. It would 

be fruitful to measure the optical constants of other metals for which 

band structure calculations have been made and t o  continue the conduc- 

tivity correlations made thus far. Improvement and refinement of ex- 

perimental technique and equipment such that data could be obtained at 

many more wavelengths in the far ultraviolet would permit finer resolu- 

tion of conductivity and band structure. 

tool when applied in this  direction. 

Optical data can be a powerful 

A continuation of the study of alloys is recommended. Many 

questions concerning the nature of metallic phase changes remain, but 

the use of optical properties and band structure analysis can provide 

further understanding of these problems. 

of alloying is to modify the band structure, more information regarding 

this  effect could lead to  effective methods of varying and controlling 

reflectivity in  the far ultraviolet. Applied to the design of optical in- 

strument s , such re sul ts  would be of immediate importance. 

Since it appears that one effect 
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CHAPTER V 

EXPERIMENTAL APPARATUS AND METHODS 

A. Monochromator and Reflectometer 

The ultraviolet monochromator used in this work was constructed 

by B a l l  Brothers Research Corporation of Boulder, Colorado. The light 

source is a glow discharge between a hollow aluminum cathode and a 

copper slit anode, and the output consists of l ines characteristic of the 

source gas used. Helium, neon, argon and hydrogen were used for the 

spectral l ines reported. 

equipment are included in the thesis by Cole. 

Mechanical details and photographs of this 
40 

Early in the course of these experiments it was discovered that a 

f i lm of oil was being deposited on the diffraction grating and causing a 

reduction of output intensity and resolution. To reduce this problem the 

baffle immediately above the monochromator diffusion pump was fitted 

with a water jacket for cooling. 

grating problem but did not solve it completely. 

This modification greatly reduced the 

Several modifications were made in the reflectometer and in its 

use. A large, semi-circular 35 mm f i l m  holder and its associated motor 

drive mechanism was removed from the reflectometer chamber in an effort 

to achieve lower pressures in  the chamber. The automatic drive mechan- 

i s m  which had been used to move both the f i lm under study and the de- 

tector in unison was disconnected and not used. It was felt that since 

data were needed at only four angles of incidence, greater precision 

would be obtained i f  the f i l m  and detector were positioned manually. In 

this manner, the metallic f i l m  was brought to the desired angle of 

40T. T. Cole, Thesis, University of Colorado, 1961, 
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incidence, then the detector was adjusted to obtain a maximum indi- 

cation of reflected light. Readings were taken at 70" , 50" , 30" and 10" 

and then repeated in  the opposite order. An average was taken of the 

two sets of readings but if any two readings at the s a m e  angle differed 

by more than four per cent, the entire series was repeated. 

The detector consisted of a nine stage photo-multiplier tube 

mounted on a movable, radial arm and its distance from the mirror was 

constant at all angles of reflection. The outer surface of the phototube 

envelope was coated with a solution of sodium salicilate in alcohol. 

After evaporation of t h e  alcohol, a thin f i l m  of the phosphor remained on 

the envelope and converted the high energy U.V. photons to lower 

energy ones which could penetrate the g l a s s  envelope and reach the 

photocathode. 

Other than the relocation of electrical ground points to reduce 

the noise level, no changes were made in  the signal amplifier and 

recorder . 
The physical geometry of the incident beam and detector assembly 

were such that a constant area,  25 mm by 6 mm, of the mirror was 

sampled for all the data reported. 

B. Thin Film Production 

Holland" d iscusses  in considerable detail  the effect of the 

rate of deposition on f i lm homogeniety. He  includes micro-photographs 

to show that a slowly deposited silver f i l m ,  for instance,  does not have 

a fully connected structure. At a deposition rate of 25A per minute a 

silver f i lm displays discontinuities and fissures on its surface and these 

are separated by approximately 0.1 microns. 

ra tes  of lOOA per second, very few of these discontinuities appear and a 

more uniform surface results. 

However , for deposition 

In all cases, photographs and x-ray 

*lL. Holland, Vacuum Deposition of Thin Films, John Wiley and 
Sons, New York, 1950. 
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studies indicate that thin f i lms  made by evaporation techniques consist 

of a n  aggregate of microcrystals , randomly oriented. Thus , even a 

beam of plane polarized radiation incident upon such a surface meets 

crystal structure with a random assortment of angles. 

To m e e t  the requirements of deposition rate suggested by Holland, 

a high speed evaporation system , which approached "flash" evaporation, 

was devised. The heat source consisted of braided 15 mi l ,  tungsten 

wires or a s m a l l  molybdenum boat through which a large electrical 

current was passed. The sources were supplied by a 5 volt, 110 ampere 

transformer whose primary was excited by a Variac. Temperatures on 

the order of 2500°C could be achieved with this apparatus, and deposi- 

tion rates of lOOOA per second. 

Gold # aluminum , and t h e  gold-aluminum alloys were evaporated 

from the tungsten filaments since both these m e t a l s  wet tungsten when 

in  their melted state. Silver, however, forms a contact angle greater 

than 90" with tungsten and must be evaporated from a container such as 

the molybdenum boats. Purity of all metals used exceeded 99.95%. 

Normal procedure in all evaporations was to slowly increase 

heater temperature until the melting point of the metal or both compon- 

ents of the alloy was reached; sputtering of the evaporant was avoided 

by this precaution. After the metals were completely melted, full power 

was applied to the heater and maintained until all the evaporant had left 

the heater. An opaque f i l m  at least 2000A thick could be produced in 
two seconds with this technique. Film thickness was  determined from a 

measure of the weight of evaporant placed in  the heater and relative 

distances between heater and film. 

The data presented by Holland show that at these high rates of 

evaporation, both phases of t h e  Au-A1 and Ag-In alloys leave the heater 

at approximately the same rate and produce a homogeneous f i lm.  To be 

assured of this feature , reflectivity measurements were made immedi- 

ately after evaporation of the alloys, the f i lms  werethen annealed 
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in  s i tu  at approximately 400°C for three hours, and reflectivity meas- 

urements were repeated. 

after annealing did not exceed the normal experimental error of m e a s -  

urement, and it was assumed tha t  homogeneous f i l m s  had been attained. 

Deviations between measurements before and 

A l l  the data reported here were taken immediately after evapor- 

ation in  si tu,  and evaporations were conducted at chamber pressures 

between 8X10-6 and lo-’ mm Hg. 

C. Data Reduction and Analysis 

Determination of n and k from the reflectivity data was made 

with the u s e  of the charts prepared by Cole and based on the graphical 

method suggested by Tousey. 

I.) The degree of polarization of the  incident beam at various wave- 

lengths was in  agreement with that encountered by Cole. 

42 
(This  method is discussed in  Chapter 

A reflectivity measurement in si tu was found to be reproducible 

t o  within i 2% for intense source lines and i 3% for the weaker lines. 

Comparison between measurements of two different f i l m s  of the same 

material and at the same wavelength indicate a n  element of error of the 

same order of magnitude. 

To investigate the effect of errors in  reflectivity on the nk prod- 

uct and conductivity, the reflectivity data for silver at 1671A were 

adjusted by i 5% and a family of n-k curves was obtained for both 

adjustments as shown in  Figure 34. It is seen that the effect of intro- 

ducing such an  error in the reflectivity data is t o  greatly increase the 

spread of intersections of these curves. The average nk product was 

also changed as shown and the errors introduced in  conductivity were 

- 6.9% and + 3.5% for the + 5% and the - 5% changes in  reflectivity 

respectively. Had an  error been made in  reflectivity at only one angle 

of incidence, three of the n-k curves would still have intersected at a 

R. Tousey, op. cit. 42 
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near common point as in Figure 34-a. It is apparent that such errors in  

reflectivity lead to multiple solutions of the Fresnel equations for n and 

k. 

To minimize such errors, reflectivity data had to mee t  the 

following criterion to be considered valid for calculation of conduct- 

ivity. The nk product was determined for each of the six possible 

intersections of the four n-k curves. These products were averaged 

arithmetically and the deviation of each product from the average was 

calculated. If the deviation for any one intersection exceeded 5% of 

the mean , these reflectivity measurements were discarded. With these 

restrictions and with the reproducibility of measurements given earlier, 

the error in conductivity at any wavelength does not exceed 5% of the 

reported value. 

products determined in this manner, only six had to be rejected as 

possibly invalid, 

It should be noted that of approximately one hundred nk 
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